Schritte International 5 Pdf Free 23
Click Here ::: https://urllie.com/2tgVEM
Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that \"some physical activity is better than none\" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of \"How many steps/day are enough\", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable \"low active populations.\" Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that \"some physical activity is better than none,\" yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day.
Around the world, physical activity guidelines are written and promoted by government and non-governmental agencies to provide direction for recommended amounts of physical activity required to benefit health, essentially answering the question \"how much is enough\" These guidelines are typically expressed in terms of frequency, duration, and intensity parameters and are based on decades of epidemiological and intervention research that has almost exclusively relied on self-reported physical activity behaviours. The recent release of the U.S. Physical Activity Guidelines [1] acknowledges that \"some physical activity is better than none\" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). The evolution of objective monitoring of physical activity using pedometer and accelerometer technology offers an opportunity to extend guidelines to include recommendations for objectively monitored parameters reflective of time spent in MVPA in the context of free-living behaviour.
In order to avoid being construed as simply another source of confusion and disagreement, it makes sense that any step-based recommendation should be harmonious with existing physical activity guidelines. They are \"not intended to supplant existing public health recommendations, but rather supplement them\" [10]. However, there is an opportunity to posit a total number of steps/day so that both habitual activity levels (taken in the course of free-living and not necessarily of at least moderate intensity) and suggested increments in physical activity that meet frequency-, duration-, and intensity-based parameters are considered in the recommended 'dose.' The question \"How many steps/day are enough\" has been previously reviewed [11, 12]. The literature related to objective monitoring of physical activity is growing at a considerable rate and it is again time to address this question. The purpose of this review therefore was to update and identify gaps in the evidence to inform step-based recommendations congruent with current physical activity guidelines and otherwise to extend guidelines to include recommendations for \"How many steps/day are enough\"
Identified themes emerged as the literature was reviewed and provide a structure for the remainder of this article: 1) normative data (i.e., expected values); 2) incremental changes expected from interventions; 3) controlled studies that determine exact step-based conversions of timed behaviour; 4) computing a step translation of duration- and intensity-based physical activity guidelines (e.g., steps/day associated with time spent in MVPA); 5) directly measured steps/day indicative of minimal time in MVPA taken under free-living conditions; and, 6) steps/day associated with various health outcomes. Essentially, each section represents a 'mini-review.' At times the search strategy was exhaustive and the exact number of articles identified is presented under the appropriate heading below (e.g., controlled studies). Exceptions occur in the case of identified current review articles (e.g., normative data, interventions). The findings of these reviews were simply summarized herein and select original articles are referred to only to make specific points. Where appropriate, details of studies are presented in tables; inconsistencies in reporting within and across tables (e.g., instrument brand, model, etc.) reflect underlying reporting inconsistencies between original articles.
Sixteen free-living healthy adult studies (Table 2) were identified that reported the percentage of their samples achieving specified step-defined cut points, including applying cut points associated with the graduated step index described above. Five used 10,000 steps/day as an exclusive cut point (no other cut point was considered). Eight reported using the graduated step index originally proposed by Tudor-Locke and Bassett [11]. Two studies of South African samples that also made use of the graduated step index were excluded from Table 1 because their lower age limits extended into adolescence [31, 32], beyond the scope of this specific review. Apparent patterns from Table 1 include: younger adults are more likely to achieve 10,000 steps/day, U.S. samples are more likely to take < 5,000 steps/day compared to Australian samples, and those with lower incomes are also more likely to take < 5,000 steps/day than high income earners. The studies that have reported data using versions of the graduated step index provide more robust (i.e., more levels) data for comparison and tracking purposes than those that have only reported relative attainment of any single value of steps/day.
In summary, a computed translation of daily free-living ambulatory physical activity for adults that includes allowance for recommended amounts of time in MVPA is 8,000 to 11,000 steps/day. Allowing for a more flexible accumulation pattern that may include some \"off\" days, and averaged across a week, the estimate is 7,100 to 9,300 step/day. Together these estimates span 7,100 to 11,000 steps/day. In both cases, it remains important to emphasize that at least a portion of these steps (3,000 for the daily accumulation and 15,000 of the weekly total accumulation) are minimally taken at an intensity of at least 100 steps/minute (i.e., moderate intensity, absolutely defined), and in bouts of at least 10 minutes.
Tudor-Locke et al. [61] applied a contrasting groups method to identify optimal steps/day related to BMI- defined normal weight vs. overweight/obese in an amalgamated data base featuring pedometer and BMI data that were independently collected but using similar protocols and the same type of pedometer from Australia, Canada, France, Sweden, and the USA. Despite data limitations (e.g., fewer data available for men than women), the researchers suggested that a total number of steps/day related to a normal BMI in adults would range from 11,000 to 12,000 in men and from 8,000 to 12,000 in women, and that values were consistently lower in older age groups than in younger age groups. Spring-levered pedometers are known to undercount steps related to obesity, so the values in this data base reflect that potential threat to validity [62]. However, their use does not completely misrepresent the general findings that steps/day differ significantly across BMI-defined obesity categories, even when measured by more sensitive accelerometers [63]. Once again, however, since pedometers are more likely to be used in clinical and public health applications, the presentation of pedometer-determined steps/day as detected in free-living populations, that include obese individuals, is relevant and therefore defensible.
Current public health physical activity guidelines are derived from accumulated knowledge gained over the past several decades primarily from epidemiological and intervention studies of self-reported physical activity. To be clear, messages to perform at least 30 minutes of moderate intensity activity on most, preferably all days of the week [70] (or more recently, at least 150 minutes/week in moderate intensity, 75 minutes/week in vigorous intensity physical activity, or a combination of both [1, 7]) can be, for the most part, traced back to research participants' subjective descriptions of this duration, intensity, and frequency of leisure-time physical activity behaviour. The well-designed dose-response to exercise in women (DREW) study clearly demonstrated that previously sedentary women who performed even 50% of physical activity guidelines, expressed in terms of energy expenditure and objectively verified, reaped benefits in terms of significant improvements in measured cardiorespiratory fitness [56], for example. However, with the advent of body worn objective monitoring technologies there has been a keen interest in providing an objectively determined translation of the physical activity guidelines as stated, particularly with reference to time in MVPA. It is quite easy to ask someone to walk on a treadmill for 30 minutes at moderate intensity and produce a precise estimate of directly observed steps taken, for example. However, it is important to emphasize that the rich collection of research that has informed public health guidelines to date is based, for the most part, on self-reported behavior, that is, people's unique perceptions and accounts of their own behaviour. We have come to accept that, although there is a correlation [2], there is a disconnect between self-reported and objectively monitored physical activity; agreement between cross-tabulated NHANES accelerometer and self-reported physical activity data was only 18.3% (men, 20-59 y) to 32.7% (women, 60+ y) [55]. Further, those with absolutely no accelerometer-determined time spent in MVPA self-reported accumulating 43.1 to 65.2 minutes/day in MVPA [55]. To be very clear, it remains possible that self-reported frequency and time spent in absolutely defined MVPA actually equates to a lesser amount of objectively monitored behaviour than a direct and objective measurement of free-living activity, that includes the same amount of MVPA, would suggest. Alternatively, it is plausible that people have been systematically over-reporting absolute intensity of activity, as evident from the observed discrepancy between concurrent estimates of self-reported and objectively measured activity [55]. 153554b96e
https://www.graineacademie.com/en/forum/welcome-to-the-forum/libro-el-principito-en-ingles-pdf-17